Skip to contents

Reports repeated values in parameters to identify redundancy before and after folding. This helps assess folding effectiveness and identify remaining optimization potential.

Usage

analyze_parameter_redundancy(
  model,
  params = NULL,
  verbose = TRUE,
  return_details = FALSE
)

Arguments

model

A multimod model object (folded or unfolded)

params

Character vector of parameter names to analyze. If NULL (default), analyzes all parameters with data.

verbose

Logical; print detailed output (default: TRUE)

return_details

Logical; return detailed data frame instead of summary (default: FALSE)

Value

If return_details=FALSE, invisibly returns summary data frame. If return_details=TRUE, returns detailed data frame with per-parameter statistics.

Details

For each parameter with data, calculates:

  • Original redundancy: ratio of repeated values to total rows

  • Folded redundancy: ratio of repeated values in folded data (if folded)

  • Compression achieved through folding

Redundancy metrics:

  • Original redundancy: percentage of rows that have duplicate values (within the full parameter dataset)

  • Folded redundancy: percentage of rows with duplicate values after folding

  • Compression ratio: original rows / folded rows

  • Remaining potential: estimated further compression if all redundancy removed

High original redundancy with no folding indicates missed optimization opportunity. High folded redundancy suggests additional dimensions could be folded.

Examples

if (FALSE) { # \dontrun{
# Analyze all parameters
analyze_parameter_redundancy(model)

# Analyze specific parameters
analyze_parameter_redundancy(model, params = c("pTechCinp2use", "pSupCost"))

# Get detailed results
results <- analyze_parameter_redundancy(model, return_details = TRUE)
View(results)
} # }